참고자료

[줄기세포] 일 연구팀, 줄기세포로 생쥐 몸에서 사람 간 만들어

줄기세포로 생쥐 몸에서 사람 간 만들었다

입력 F 2013.07.04 08:43 수정 2013.07.04 09:00http://www.kormedi.com/news/article/1207103_2892.html





일본 연구팀 세계 최초 성공

일본 과학자들이 줄기세포를 인간의 간으로 자라게 하는 데 성공했다. 지금까지 줄기세포로 심장세포나 간세포 등 세포 단위를 만든 적은 있었지만 간과 같은 장기 자체를 만든 것은 이번이 처음이다.

일본 요코하마시립대 의학대학원의 다케베 다카노리 교수팀은 국제학술지 ‘네이처(Nature)’ 4일자 인터넷판에 발표한 논문에서 “유도만능줄기(iPS)세포 기술로 생쥐의 몸에서 사람의 간을 만들었다”고 밝혔다.

iPS 세포는 다양한 인체 세포로 분화될 수 있는 원시 세포를 가리킨다. 배아줄기세포는 수정란, 복제배아줄기세포는 다 자란 세포와 여성의 난자를 융합해 만든다. 이에 비해 iPS 세포는 다 자란 성인의 세포를 유전자 조작을 통해 줄기세포로 만든 것으로 배아·복제배아 줄기세포에 비해 생명윤리 논란에서 자유롭다.

연구팀은 먼저 iPS세포를 만들어 이를 다른 세포들과 함께 배양해 간으로 발전할 수 있는 ‘간 씨앗(liver bud)’을 만들었다. 간 씨앗은 5~6주차 태아가 가진 간의 초기 상태를 말하는 것으로 출생할 때가 되면 간 씨앗은 간으로 자란다.

연구팀은 간 씨앗을 생쥐의 뇌와 복부에 넣고 배양했다. 이 씨앗은 생쥐의 혈관에 연결돼 영양분을 공급받으며 자라기 시작했다. 이렇게 만들어진 ‘미니 간’은 단백질 생성, 해독 작용 등과 같은 인간의 간이 하는 기능을 정상적으로 수행할 수 있는 것으로 나타났다.

다케베 교수는 “이번 논문은 유도만능줄기세포에서 기능을 하는 인간 장기를 만들 수 있다는 것을 처음으로 증명했다”며 “생쥐에서 얻은 단백질 알부민을 검사한 결과 사람 간이 만든 알부민으로 확인됐고, 악성 종양 생성이나 면역 거부 반응은 없었다”고 말했다. 그는 “이번 기술을 사람에게 적용하려면 간 씨앗을 대량 생산할 수 있어야 한다”며 “실제 환자에게 도움을 주려면 10년은 더 필요하다”고 덧붙였다.

======================

 


Nature | News


Miniature human liver grown in mice



Cells self-organize and grow into functional organs after transplantation.








This stem cell approach may one day help patients waiting for liver transplants.


Science Photo Library



Transplanting tiny ‘liver buds’ constructed from human stem cells restores liver function in mice, researchers have found. Although preliminary, the results offer a potential path towards developing treatments for the thousands of patients awaiting liver transplants every year.


The liver buds, approximately 4 mm across, staved off death in mice with liver failure, the researchers report this week in Nature1. The transplanted structures also took on a range of liver functions — secreting liver-specific proteins and producing human-specific metabolites. But perhaps most notably, these buds quickly hooked up with nearby blood vessels and continued to grow after transplantation.


The results are preliminary but promising, says Valerie Gouon-Evans, who studies liver development and regeneration at Mount Sinai Hospital in New York. “This is a very novel thing,” she says. Because the liver buds are supported by the host’s blood system, transplanted cells can continue to proliferate and perform liver functions.



However, she says, the transplanted animals need to be observed for several more months to see whether the cells begin to degenerate or form tumours.


There is a dire scarcity of human livers for transplant. In 2011, 5,805 adult liver transplants were done in the United States. That same year, 2,938 people died waiting for new livers or became too sick to remain on waiting lists.


However, attempts to create complex organs in the laboratory have been challenging. Takanori Takebe, a stem-cell biologist at Yokohama City University in Japan who co-led the study, believes this is the first time that people have made a solid organ using induced pluripotent stem cells, which are created by reprogramming mature skin cells to an embryo-like state.


Testing whether liver buds could help sick patients is years away, says Takebe. Apart from the need for longer-term experiments in animals, it is not yet possible to make liver buds in quantities sufficient for human transplantation.


In the current work, Takebe transplanted buds surgically at sites in the cranium or the abdomen. In future work, Takebe hopes to create liver buds small enough to be delivered intravenously in mice and, eventually, in humans. He also hopes to transplant the buds to the liver itself, where he hopes they will form bile ducts, which are important for proper digestion and were not observed in the latest study.


Self-organizing structures


The researchers make the liver buds from three types of human cells. First, they coax induced pluripotent stem cells into a cell type that expresses liver genes. Then they add endothelial cells (which line blood vessels) from umbilical cord blood, and mesenchymal stem cells, which can make bone, cartilage and fat. These cell types also come together as the liver begins to form in the developing embryo.


“It’s a great day for developmental biology,” says Kenneth Zaret, who studies regenerative medicine and liver development at the University of Pennsylvania in Philadelphia. “By reconstituting cell interactions that we know are important for natural liver progression, they get what appears to be robust, mature tissue.”


The project began with an unexpected phenomenon, says Takebe. Hoping to find ways of to make vascularized liver tissues, he tried culturing multiple cell types together and noticed that they began to self-organize into three-dimensional structures. From there, the process for making liver buds took hundreds of trials to tweak parameters such as the maturity and ratios of cells.


Other organs


This strategy takes a middle path between two common strategies in regenerative medicine. For simple, hollow organs such as the bladder and trachea, researchers seed scaffolds with living cells and then transplant the entire organ into patients. Researchers have also worked to create pure cultures of functional cells in the laboratory, hoping that cells could be infused into patients, where they would establish themselves. But even if the cells work perfectly in the laboratory, says Gouon-Evans, the process of harvesting cells can damage them and destroy their function.


Zaret thinks that the liver buds work might encourage an intermediate approach. “Basically, put the cells in a room together and let them talk to each other and make the organ.”


Self-organizing structures from stem cells have also been observed for other organ systems, such as the optic cup, an early structure in eye development2. And ‘mini-guts’ have been grown in culture from single human stem cells3.


Takebe believes that the self-organizing approach might also be applicable to other organs, such as lung, pancreas and kidney.



Journal name:
Nature

DOI:
doi:10.1038/nature.2013.13324


References





  1. Takebe, T. et al. Nature http://dx.doi.org/10.1038/nature12271 (2013).

    Show context

  2. Nakano, T. et al. Cell Stem Cell 10, 771785 (2012).


    Show context

  3. Sato, T. et al. Nature 459, 262265 (2009).


댓글 남기기

이메일은 공개되지 않습니다.

다음의 HTML 태그와 속성을 사용할 수 있습니다: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>